

Indianapolis: First Hestia City

Images of Indianapolis CO₂ emissions generated by the Hestia software

"Top-down" approach to model carbon fluxes

CO₂ surface fluxes

recorded CO₂ concentrations

Obstacles & Amendments to top-down approach

Difficulties of "top-down" approach

- footprints * flux \longrightarrow CO₂ tower concentrations flux \longleftarrow X (footprints)⁻¹ * CO₂
- too few towers
- Need to make a priori assumptions about flux magnitude and flux spatial patterns
 - important for posterior estimates of surface fluxes
 - but no standard specification method

A coherent, systematic, atmosphere-data-driven method for specifying an a priori flux distribution

Bayesian hierarchical spatial model

```
Bayes' rule

[process, params|data] 

[params]

× [process|params]

× [data|process, params]
```


y: observed carbon fluxes

S: source strengths (Gaussian process)

 θ : params governing the magnitude and smoothness of the GP

Vulcan Data

Flux in $\mu mol/(m^2*s)$

log(Flux) in $log(\mu mol/(m^2*s))$

Posterior results

Fitted

Actual

Future directions

Apply transport model to posterior fluxes to reproduce tower CO₂ concentrations

Scale up computations

Incorporate temporal information

Bayesian hierarchical GP model is clean, structured, and scientifically sound

grants full posterior distributions for critical model parameters

use in place of overconfident or ad hoc priors.

Thank you!

- Israel Lopez-Coto (EL)
- Kuldeep Prasad (EL)
- Antonio Possolo (SED)

